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For the HI-WPP idealized mountain wave test cases on a reduced radius sphere, we have
agreed to focus on three model configurations that are variations from the original DCMIP
(Ullrich et al. 2012, DCMIP) experiments. These cases are: M1; flow over a quasi two-
dimensional ridge that can be compared to published results for uniform flow over a two-
dimensional ridge (Schér et al. 2002, SLFLG; Klemp et al. 2003, KSF), M2; flow over a cir-
cular mountain that can be compared to 3-D linear analytic solutions for uniform flow over
the circular mountain in a Cartesian geometry, and M3; flow with vertical wind shear over a
circular mountain as defined in DCMIP test case 2.2 .

Mean atmospheric sounding

The intent for these testcases is to simulate the flow of an atmosphere having constant wind
and stability over a specified terrain profile on a reduced radius sphere in the absence of ro-
tation (2 = 0). Following DCMIP case 2, we initialize the atmosphere with an isothermal
mean state at the equator [T;(\, 0, z) = T,, = 300 K] and a zonal wind in solid body rotation
with a vertical wind shear (for case M3) specified at the surface such that:

i (N, @, 2) = Ueq(1 + c2) cos ¢ as z— 0, (1)

where ue, = 20 ms~! and the subscript i refers to the initial undisturbed state. The desired
balances in the initial state derive from balancing the gradient wind equation:
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together with the hydrostatic equation:
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Cross-differentiating (2) and (3):

0 /0Inp; olnT; 2u; Ou;
( P ) =7 = tan ¢. (4)
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Integrating (4) for 0InT;/0¢ at the surface where u; is defined by (1) then yields

2
Ti(N\, ¢, 2) = T;(¢) = Teq exp (_CUTeq sin? qb), (5)

which is a slightly more exact expression than the one given in DCMIP (81). Integrating (4)
for Ou;/0z above the surface, using (5) to evaluate 01nT;/0¢,

wi(A, @, 2) = UeqV' 1+ 2c 2 cos ¢, (6)
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which provides a simpler and more accurate expression for the initial wind profile than DCMIP
(82). The differences of (5)-(6) from DCMIP (81)-(82) are quite small, but provide a specifi-
cation for the wind field that is easier to interpret and to apply.

Using (2) and (3), the balanced initial pressure field becomes (with minor approximation):

2
u gz
7 )‘7 ’ — Pe - = in® ¢ — 7
pi(A, ¢, 2) pqexp( R ¢ RdTeq)’ (7)
which corresponds to DCMIP (80). As pointed out in the DCMIP test-case document, for

a pressure-based vertical coordinate (7) can be rearranged to provide an equation for the

height field (DCMIP eq. 84):

uZ, sin? ¢
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Mountain topography

Two different terrain profiles are used for these testcases: one that allows semi-quantitative
comparison with the well-documented 2-D SLFLG testcase, and one using the same circular
terrain profile as in the DCMIP 2.1 experiment. The circular mountain used in DCMIP 2.1
is specified according to the expression:

T(Acggcb) ] cos? [W(Qf ¢>]7

(DCMIP, eq. 76), where r(\, ¢) is the great-circle distance from the mountain center at
(A¢s @c), as defined in DCMIP (77):

2s(\, @) = ho exp [— (9)

r(\ @) = a;(—ef arccos|[sin ¢, sin ¢ + cos ¢.cosp cos(A — \¢)], (10)

ares is the full earth radius, X is the reduced earth-radius scaling factor, hy = 250 m, dy =
5000 m, and &, = 4000 m.

The terrain defined in (9) was configured such that the profile along its centerline is identical
to the 2-D terrain investigated by SLFLG. Thus, to achieve similarity with the 2-D SLFLG
case, we have modified the mountain profile by retaining the 2-D SLFLG terrain shape along
the equator, and then extending this terrain along a ridge in the north-south direction, with
the height and width gradually reduced to zero approaching the poles (i.e. multiplying the
2-D terrain profile by cos ¢). In this manner, the mountain-wave solution along the equator
is very similar to the 2-D solutions published by SLFLG and KSF. For this purpose, we alter
the terrain specified in (9)-(10) by defining the distance r used in (9) as the distance along
the earth’s surface from the ridge axis (at A = A.) in the longitudinal direction. With this
modification, the expression for r becomes

r(A6) = 2L (3 = A) cos g = ro(A) cos o, (11)



The ridge height z; is then tapered off toward the poles with a cosine function such that
Nzs(Ae, @) /ui(¢), a measure of the nonlinearity of the flow, remains independent of ¢. Sim-
ilarly, the horizontal length scales of the terrain (d = dgcos ¢, £ = £y cos ¢) are scaled with
latitude so that the ratio of the vertical length scale (u;/N) to the horizontal scale also does
not depend on latitude. The expression for the terrain height then becomes

zs(A, @) = hgexp [— TOC(Z%\)Q] cos? [%{E)\)} cos(¢). (12)

Model domain configuration for case M1 to compare with the SLFLG 2-D test
case

Here, the intent is to define a model configuration that will provide good quantitative agree-
ment with the 2-D test case investigated by SLFLG and KSF. For this purpose we specify

a reduce-radius scaling factor of X = 166.7, which is one third the scaling factor used for
DCMIP 2.1. This larger radius sphere is adopted to minimize the effects of sphere curvature,
and to prevent the mountain-wave disturbances from circling the globe during a two-hour
simulation. Maintaining similarity with the SLFLG case, we specify the model top z;,, = 20
km, with an absorbing layer employed above z; = 10 km. (The damping in the absorbing
layer can be specified using Rayleigh damping as proposed in DCMIP (78)-(79), or another
approach, if preferred.) For the ridge terrain profile we find that a horizontal grid spacing
of about 1.1° (~ 720 m) and a vertical grid spacing of ~ 500 m is sufficient to accurately
capture the wave development of interest above the mountain (to 10 km) and provide good
semi-quantitative agreement with the linear analytic solution for the 2-D case. Raising the
domain top to 30 km for this case is not advised as curvature effects and other 3-D influ-
ences at the higher levels will compromise comparisons with the original 2-D SLFLG test-
case. The time step used for the model integration is At =12 s.

Example MPAS results for case M1: ridge terrain profile

The ridge terrain profile is depicted in Figure la. Horizontal cross sections of the perturba-
tion potential temperature 6’ and vertical velocity w at 8 km are displayed in Figures 1b and
1lc, respectively. The wave structure over the central portion of the ridge is reasonably two-
dimensional, with more noticeable three-dimensional structure appearing at higher latitudes,
where both the terrain height and wind speed have decreased significantly from their ampli-
tudes along the equator.

To compare results with the 2-D wave structure discussed by SLFLG and KSF, we display in
Figure 2a the vertical cross section of the vertical velocity along the ridge centerline (equa-
tor) for the terrain profile as defined in (8), but with a maximum height hy = 25 m to ensure
that the wave response is essentially linear. We have also derived the linear analytic solution
for the corresponding flow over a 2-D ridge, which is shown in Figure 2b. For reference, we
have included the derivation of this linear solution in Appendix A. This wave structure arises
due to the combination of shorter scale evanescent waves at low levels forced by the narrow
ridges, together with the longer wavelength modes aloft forced by the broader terrain enve-
lope. The good semi-quantitative agreement of the MPAS simulation with the 2-D analytic
solution confirms that the grid structure is sufficient to resolve the dominant wave response,

3



and that the specified ridge profile and the earth-radius reduction allow a reasonable cor-
respondence with the 2-D flat-plane behavior. The trailing perturbations evident at higher
levels in Figure 2a, however, reflect the residual 3-D influences due to curvature effects on
the reduced radius earth.

Figure 3 displays the vertical cross sections for w along the ridge centerline at 2 h for a max-
imum terrain height hy = 250 m, as used by SLFLG and KSF. These fields are quite sim-
ilar to the 2-D simulations in those papers. Notice that the amplitudes of the waves are
slightly stronger than those shown in Figure 2, due to the presence of weak nonlinear ef-
fects. These panels illustrate the importance of using consistent numerics in representing
the metrics in the terrain-following coordinate transformation. As discussed by KSF, this
issue is most critical for the treatment of the coordinate metric (, that appears in the ex-
pression for w = u(, + w(,. Figure 3 documents that using either fourth-order (Figure 3a) or
second-order (Figure 3b) numerics for the horizontal advection terms yields accurate results
provided the coordinate metric ¢, is computed using the same order numerics. In contrast,
using fourth order advection together with second order numerics for the metric term leads
to spurious perturbations (Figure 3c), as documented by KSF.
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Figure 1. (a) Ridge-like terrain profile zs as represented in (12). Horizontal cross sections from an MPAS
simulation with hg = 250 m at 8 km at 2 h for (b) Perturbation potential temperature §’ and (c) Vertical
velocity w. Geographic boundaries have been left in place for reference.
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Figure 2. (a) West-east vertical cross section of vertical velocity along the ridge centerline from an MPAS
simulation using a linear mountain height hg = 25 m at 2 h. (b) Vertical cross section of vertical velocity
from the 2-D linear analytic solution for hg = 25 m.
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Figure 3. West-east vertical cross sections of vertical velocity along the ridge centerline from MPAS sim-
ulations for hg = 250 m at 2 h. (a) Fourth order horizontal advection with fourth order terrain-following
metric terms; (b) second order horizontal advection with second order terrain-following metric terms; and
(c) fourth order horizontal advection with second order terrain-following metric terms.
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Model domain configuration for case M2 and M3 for a circular mountain

For the circular mountain ((9), we again specify X = 166.7 to reduce curvature effects and
prevent disturbances from circling the globe during a two-hour integration. As requested, we
have raised the model top to zt,, = 30 km (with a damping layer above 20 km), although
this greater domain depth begins to cause significant discrepancies from the corresponding
wave structure in a Cartesian geometry due to increasing curvature effects. Because of the
more significant smaller scale structure in the nonhydrostatic wave train produced by the cir-
cular mountain, we have specified a smaller horizontal grid spacing of ~ 360 m (one-half that
used for the ridge mountain simulations). We have specified a nominal vertical grid spac-

ing of 250 m to resolve the smaller scale structure in case M2, and integrate over time using
At = 6 s. (A vertical grid spacing of 500 m, as proposed for the original DCMIP 2.1 test
case, was found to be less accurate in comparisons with the linear analytic solution for case
M2.) For the shear case M3, we initialize the wind field using (6), in which the winds in-
crease from 20 m s~ ! at the surface to about 80 m s~! at the model top at 30 km. For this
case we find that the results are quite similar using either Az = 250 m or Az = 500 m. The
time step is reduced to At = 1.5 s to insure stability with the strong winds aloft.

Example MPAS results for case M2: circular mountain with uniform mean wind

Figure 4 illustrates the evolution of potential temperature and vertical velocity over the cir-
cular mountain defined by (9)-(10). The mountain waves developing in response to the uni-
form flow over this terrain exhibit a strong nonhydrostatic wave train that extends down-
stream of the mountain as well as laterally. The somewhat noisy behavior at the downstream
edge of the expanding wave train appears to be the remnants of the startup vortex arising
from the impulsive insertion of the terrain at the beginning of the integration. The poten-
tial temperature perturbations extend laterally more rapidly than the vertical velocity and
thus are affected sooner by curvature influences. These influences are apparent in the smaller
vertical scales appearing in the potential temperature field downstream of the mountain at
altitudes between 10-20 km.

Figure 5 provides a more quantitative comparison of the vertical § and w cross sections at 2
h for the simulation on the reduced-radius sphere with corresponding behavior in a Carte-
sian geometry. For this purpose, we have also reconfigured the MPAS grid to represent a flat
plane of hexagonal grid cells with doubly periodic lateral boundaries. In addition, we have
constructed the 3-D linear analytic solution for uniform flow over the circular mountain in a
Cartesian geometry (see derivation in Appendix B). In these vertical cross sections, the flat
plane simulation exhibits good agreement with the linear analytic solution, confirming that
the grid resolution is sufficient to accurately capture the nonhydrostatic wave structure. The
small discrepancies in the simulated results are likely due to weak nonlinear effects and slight
departures from steady state. In the simulation on the sphere, the vertical velocity field at 2
h is quite similar to the results in a Cartesian geometry. However, as mentioned above, the
potential temperature perturbations are exhibiting significant departures at upper levels.

This behavior is further illustrated in horizontal cross sections for these variables. Figure 6
depicts these cross sections at 2 h at a height of 8 km for the simulations on the sphere and
flat plane, as well as the linear analytic solution. At this altitude, there is good agreement
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Vertical 6 and w cross sections along centerline on X=166.7 sphere
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Figure 4. Vertical cross sections for 6/ and w in the streamwise direction along the mountain centerline on
the reduced radius sphere with X =166.7 at t = 30, 60, and 90 min.
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Figure 5. Vertical cross sections for 6/ and w in the streamwise direction along the mountain centerline at
t = 120 min for the (a)-(b) reduced radius sphere and (c)-(d) flat plane. (e)-(f) depicts the corresponding

3-D linear analytic solution from Appendix B.
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Horizontal 6 and w cross sections at 8 km
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Figure 6. Horizontal cross sections for §/ and w at z = 8 km at t = 120 min for the (a)-(b) reduced radius
sphere and (c)-(d) flat plane. (e)-(f) depicts the corresponding linear analytic solution from Appendix B.
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Horizontal 6 and w cross sections at 16 km
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Figure 7. As in Figure 6 except at z = 16 km.
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Vertical 6 and w cross sections along centerline at 2 h on X=166.7 sphere
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Figure 8. Vertical cross sections for §/ and w in the streamwise direction along the mountain centerline on
the reduced radius sphere with X =166.7 at t = 2 h (a)-(b) with no upper absorbing layer, and (c)-(d)
with an absorbing layer in the region z =20-30 km.

between the solutions on the sphere and the flat plane. Notice, however, that the potential
temperature perturbations extend further in latitude than those for vertical velocity and
show some departure from the Cartesian behavior at the higher latitudes. Figure 7 shows
these same fields at 2 h at a height of 16 km. At this higher altitude, deviations in the ver-
tical velocity field from that on the flat plane are noticeable, particularly at the higher lati-
tudes. Even greater departures are apparent in the potential temperature perturbations at
this height.

To assess the impact of the upper absorbing layer, we reran the simulation for the circular
mountain on the X = 166.7 reduced-radius sphere (shown in Figures 4-7) with the absorbing
layer turned off. The vertical cross sections for the potential temperature and vertical ve-
locity along the equator at 2 h are shown in Figure 8, both with and without the absorbing
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layer. These results emphasize the importance of absorbing the upward propagating gravity-
wave energy to prevent significant artificial reflection from the upper boundary of the do-
main.

Example MPAS results for case M3: circular mountain with mean vertical wind
shear

Figure 9 displays the time evolution of the vertical cross sections of potential temperature
and vertical velocity along the mountain centerline for the wind shear case M3. By 2 h the
wave disturbances have propagated to about 270° (180 km) downstream of the mountain.
Because of the strong winds aloft shorter wave length components of the mountain waves are
trapped below the level where they become evanescent. The energy of these waves is ducted
and propagates downstream. Trapped waves with a wave length of about 15 km are partic-
ularly evident in the region below 10 km. Figure 10 compares the results at 2 h for simula-
tions with Az = 500 m and Az = 250 m, respectively. The close agreement of these solutions
confirms that for this case, the coarser resolution is sufficient to accurately resolve the moun-
tain wave structure.

The horizontal cross sections for the perturbation potential temperature and vertical velocity
at 2 h are displayed in Figure 11 at z = 8 km and z = 16 km. At the higher levels it appears
that curvature effects at high latitudes may be significantly influencing the wave structure,
although we have not attempted to quantity these effects.

APPENDIX A
2-D linear analytic solution for a Schar mountain in an isothermal atmosphere
The linear wave equation for flow with an isothermal mean state Ty and a constant mean
wind U is well suited for analysis since it can be written in a form that has constant coeffi-

cients. Removing the dependency on the mean density profile

Bz

w(x, z) = (%) %wl(x, z) = exp(;)wl(x,z),

wi is periodic with height and satisfies the wave equation:

N2 2
V2w1 + (W - %)wl = O, (Al)
where )
g g
N2 = d pg= A2
CpTO ’ an ﬁ RdTO ( )

For a single Fourier mode, wy (x, z) = w1 (k, z) exp (ikx), and (A1) becomes:

2 A~
d w1
dz>2

+m*iy =0 (A3)
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Vertical 6 and w cross sections along centerline on X=166.7 sphere
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Figure 9. Vertical cross sections for 6/ and w in the streamwise direction along the mountain centerline on

the reduced radius sphere with X =166.7 for case M3 (vertical shear) at t = 60, 90, and 120 min.
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Vertical 6 and w cross sections along centerline at 2 h on X=166.7 sphere
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Figure 10. Vertical cross sections for 8/ and w in the streamwise direction along the mountain centerline at
t = 120 min for case M3 (vertical wind shear) for (a)-(b) dz = 500 m and (c)-(d) dz = 250 m.

where ) )
N
2 _ 2
The lower boundary terrain profile is given by
2
h(x) = ho exp(—fl—2> cos? %,

and its corresponding Fourier transform is

e} 2

h(k) = ho exp(—fi—Q) [1+ cos Kz] cos kx da
0

2 2

(A6)

= ghod{e){p [—dZ(K + k:)Q} + 2exp [—dzkﬂ + exp [—dZ(K — k;)Q} }, (A7)
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Horizontal 6 and w cross sections at 2 h on X=166.7 sphere
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Figure 11. Horizontal cross sections for #’ and w at t = 120 min for case M3 on the reduced radius sphere
at (a)-(b) z = 8 km and (c)-(d) z = 16 km.

where K = 27 /€. Solving (A3) subject to the lower boundary condition 1 (k,0) = ikUh(k)
and applying a radiation condition to ensure upward propagation of wave energy, yields:

exp [isgn(k)mz]  for m? >0

W (k, 2) = ikUh(k) exp (—|ml-) for m? <0 (AS)
Taking the inverse Fourier transform recovers the 2-D vertical velocity field,
w(zx, z) = % exp(%) /_0; w1 (k, z) exp (ikx) dk
= —% exp(%) /Ok* k h(k)sin (m z + kx) dk
- /oo k h(k) exp (—|m)| z) sin kz dk (A9)
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where

N2 2\ 3
Bt = (W - %) | (A10)

APPENDIX B
3-D linear analytic solution for a circular mountain in an isothermal atmosphere

The 3-D linear wave equation for flow with an isothermal mean state Ty and a constant
mean wind U can be derived in the same manner as the 2-D wave equation in Appendix A.
For a single horizontal Fourier mode, wi(z,y, z) = w1 (k, 1, z) exp [i(kx + ly)], the 3-D coun-
terparts to (A3)-(A4) become:

d?uin

=+ m%i; =0 (B1)
with s o ) )
mQZk;l (%-k@)-%. (B2)
The circular terrain profile is given by
r? + y2 o (T
h(z) = hg exp(— 7 ) cos (E \/W), (B3)

and its corresponding Fourier transform is

R 00 00 2 2
h(k,l) = 4h0/ / exp(—x ;;y ) cos? (gx/xQ + y2> cos kx cosly dy dx (B4)
o Jo

Solving (B1) subject to the lower boundary condition 1 (k,,0) = ikUh(k,1) and applying a
radiation condition to ensure upward propagation of wave energy, yields:

(B5)

7 ) k f 250
wy(k,l, z) = ikUh(k,1) {exp [Z sgn ( )mz} or m } |

exp [—|m|z] for m? <0

The 3-D vertical velocity field is then obtained by taking the inverse Fourier transform of
(B5):

w(zx,y,z) = 4—71r2 exp(%) /_OO /_OO wy (k, 1, 2) exp [i(kx + ly)]) dkdl

= _% exp(%) /OOO{/OIC* kh(k,1)sin (m z + kx) dk

- / k h(k,1) exp [—|m)| 2] sin ka dk‘} coslydl, (B6)

*
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where k* is the value of k for which m = 0 in (B2). To evaluate this linear solution, the
forward transform of the terrain (B4) and the inverse transform to recover w in (B6) are in-
tegrated numerically.
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